

Securing the Cloud:
Detecting and Reporting

Sensitive Data in ECR
Images

About Me

Chandrapal Badshah
Security Researcher & Trainer
5+ Years of Experience
Cloud & Cloud Native Security
Blogs at badshah.io
 - @bnchandrapal

Introduction to Amazon
Elastic Container Registry

• Yet another “elastic” service from AWS
• Helps storing and distributing container images
• Integrates with other AWS services
• ECR supported private repositories till ECR Public was

released (on 01 Dec 2020): https://gallery.ecr.aws/

https://gallery.ecr.aws/

Who uses ECR Public registries?

and many more…

Some ECR Terminologies

public.ecr.aws/datadog/agent:6.53.0-rc.1

Registry
Alias

Repository
Name

Image
Tag

Some ECR Terminologies

public.ecr.aws/datadog/agent:6.53.0-rc.1

Registry
Alias

Repository
Name

Image
Tag

Contact AWS Support for
Verification

Some ECR Terminologies

AWS
Account

One public
Registry

One per AWS account
8-char registry name -
abcd1234

Repo 1

Repo 2

Repo 3

Tag A

Tag B

Tag A’

Tag B’

Tag N’

.

.

.

Problem with Container
Images

• Vulnerable Packages in Base Image
• Insecure Dependencies
• Insecure Image Configurations

• running as root
• tonnes of unwanted software

• Hardcoded secrets
• Malware, Trojans, Backdoors

Problem with Container
Images

• Vulnerable Packages in Base Image
• Insecure Dependencies
• Insecure Image Configurations

• running as root
• tonnes of unwanted software

• Hardcoded secrets
• Malware, Trojans, Backdoors

Hardcoded Secrets in
Container Images

• A very common problem
• DockerHub images contained contains lots of secrets

Source: https://redhuntlabs.com/blog/scanning-millions-of-publicly-exposed-docker-containers-thousands-of-secrets-leaked/ (Nov, 2021)

https://redhuntlabs.com/blog/scanning-millions-of-publicly-exposed-docker-containers-thousands-of-secrets-leaked/

So, What about ECR?

Methodology to find secrets

Scrape ECR Registries

Fetch all image tags

Scan using OSS tools
(Trufflehog, Trivy, etc)

Methodology to find secrets

Scrape ECR Registries

Fetch all image tags

Scan using OSS tools
(Trufflehog, Trivy, etc)

ECR Public used AWS Cognito when
searching for images. Scraping was
complex and had issues.

Methodology to find secrets

Source: https://aws.amazon.com/about-aws/whats-new/2023/10/amazon-ecr-public-navigation-search-features-gallery/

https://aws.amazon.com/about-aws/whats-new/2023/10/amazon-ecr-public-navigation-search-features-gallery/

Stage 1: Scraping Registries

Scrape ECR Registries

Fetch all image tags

Scan using OSS tools
(Trufflehog, Trivy, etc)

ECR no longer used AWS Cognito.
Registries can be scraped.

Stats
• Unique registry aliases: >34,000

• Unique repositories: >106,000

• Top 5 registry aliases having most repos:
• biocontainers - 9149
• y2o1b8w4 - 3905
• h2x8n2t0 - 1578
• d3e0i3l1 - 1411
• k1i2y5t4 - 1251

Stats as on 10 Apr 2024

Moar Stats
Repositories can be tagged with supported system
architecture and operating systems
Remember these are just tags. Actual image might differ.

Stats as on 10 Apr 2024

Some weird things!

Some registry aliases may be abusing ECR Public.
Or probably using it for exfiltrating data.

Stage 2: Scraping Tags

Scrape ECR Registries

Fetch all image tags

Scan using OSS tools
(Trufflehog, Trivy, etc)

Pretty
straightforward

Stats
• Total unique docker images: >1,515,000
• Top 5 registry aliases having most tags:

• bitnami - ~212,000
• l0g8r8j6 - ~140,000
• biocontainers - ~93,000
• docker - ~75,000
• gravitational - ~36,000

Stats as on 10 Apr 2024

Exclusions before we proceed
• Scanning all images is super costly
• Excluded the following:

• Windows Container Images
• Linux Container Images outside x64 and ARM architecture
• Container Images of verified registries
• Container Images of potential bot accounts

Stage 3: Scanning

Scrape ECR Registries

Fetch all image tags

Scan using OSS tools
(Trufflehog, Trivy, etc)

Pretty
straightforward

Stage 3: Scanning

SQS
Feeder

Stage 3: Scanning (Optimized)

SQS

SQS (DLQ)

Feeder

Refeeder
Ignores Windows images

Cache image layers
to save bandwidth

Ignore duplicate
images

Stage 3: Scanning (Optimized)

How it started?

Stage 3: Scanning (Optimized)

How it started? How it ended?

Stats
• Total images I scanned: 84,692
• Images containing at least 1 secret: 5,900

Hardcoded AWS Credentials
Valid AWS keys leaked: 111
Out of which 14 belong to root users
Interesting IAM usernames:

• upload-testing
• s3-role
• cicd-developer
• Administrator
• backup-user
• terraform-admin

If I were an attacker!

• Cloud Credentials -> Cryptomining

• DB Credentials -> Dump User Data

• Enterprise Communication Tools -> Phishing

• VCS credentials (GitHub, GitLab, etc) -> Dump

proprietary source code

But No!

First Hurdle: Correlating

First Hurdle: Correlating
• There’s no direct correlation

between registry alias and
AWS account

• Common ways to find
domain name from container
image

• Maintainer label
• Hostname used in config files
• Git commit log

Correlating from Secrets
• Certain secrets allow correlating

without causing damage
• GitHub token -> GitHub User/Org ->

Email ID/Domain

Correlating from Secrets
• Certain secrets allow correlating

without causing damage
• GitHub token -> GitHub User/Org ->

Email ID/Domain

Other secrets:
● GitLab Token
● Slack Token
● SSL Certificate

Fun Fact #1
A good number of images are very minimal.

All that exists are valid secrets and probably a binary file
or generic software installation directory (ELK, Java, etc)

Hardships of Correlating
• Usage of personal emails (Gmail, Mail.ru, etc)
• Maintainer labels of base images can be misleading
• Secrets could be correlated to two or more orgs (ex:

Consultancies and Freelancers)
• SaaS & PaaS providers make it trickier to correlate

Second Hurdle: Reaching
out safely to affected users

• Use an email ID which can be correlated to you
• Send an email saying I found a vuln in their infra

(without giving much info)
• Pray your email is not marked spam and wait for a

reply in 15-30 days
• Send a second final email saying it’s the final reminder
• Ignore and focus on your (next?) research

Email Format

First email

Last Email Format

Final email

I need to ensure I don’t reach out to these domains again in future

Good question

Check out https://attrition.org/errata/legal_threats/

https://attrition.org/errata/legal_threats/

Fun Fact #2

Security product companies are just
software companies

Good number of affected security companies don’t have:
• security@ email address
• security.txt file
• vulnerability disclosure/bug bounty program

Fun Fact #2

Security product companies are just
software companies

Good number of affected security companies don’t have:
• security@ email address
• security.txt file
• vulnerability disclosure/bug bounty program

They are still ISO 27001, etc compliant 😜

Third Hurdle: Get it fixed

My research in a nutshell
HARDCODED SECRETS

My research in a nutshell
HARDCODED SECRETS

ALLOWS VALIDATION OVER INTERNET

Expired Credentials
Internal passwords

SSH/Private Keys
JWT Signing Keys

Secrets with IP
Whitelisting

My research in a nutshell
HARDCODED SECRETS

ALLOWS VALIDATION OVER INTERNET

CORRELATABLE

Validated secrets
that can’t be

correlated

My research in a nutshell
HARDCODED SECRETS

ALLOWS VALIDATION OVER INTERNET

CORRELATABLE

EMAIL RESPONSE

Bounced Emails
No Email Response

Auto responders
Email ID Restrictions

My research in a nutshell
HARDCODED SECRETS

ALLOWS VALIDATION OVER INTERNET

CORRELATABLE

EMAIL RESPONSE

FIXED
Email Ghosting

What’s the greatest
hardship?

What’s the greatest
hardship?

NO INCENTIVES TO DO THE
RIGHT THING

Case Studies

Case Study 1

Case: Developer hardcoded GitLab token
Impact: Didn’t contain source code. Unable to clone source code.
Status: Fixed by AWS.

Case Study 2

Case Study 2 - Scenario

Org A Org B

● Hardcoded GitHub token
● Other Org B credentials
● Private Repo Source

Code

Case Study 2 - Scenario

Org A Org B

● Hardcoded GitHub token
● Other Org B credentials
● Private Repo Source

Code

Case Study 2 - Scenario

Org A Org B

● Hardcoded GitHub token
● Other Org B credentials
● Private Repo Source

Code

Listing all
Private

GitHub repos
of Org A

Case Study 2

Case: Freelance Developer hardcoded GitHub token
Impact: Access to private GitHub repos.
Status: Fixed by Org A. No response from Org B. Bounty: $50

Case Study 3

Case Study 3

How to defend?

How to protect yourself?
• Avoid creating public ECR registries
• AWS Inspector doesn’t detect hardcoded secrets yet.
• Use OSS tools like Trufflehog and Trivy.
• Use container best practices

• Avoid COPY . . OR ADD . .
• Add dockerignore to ignore common folders like “.git”
• Use multi-stage builds

• If budget allows, procure External Attack Surface
Management tool which monitors new sources

How to make vuln reporting
easier?

• Have a security@ email ID
• bugbounty@, infosec@, etc can’t be found unless

you publish them in Privacy Policy

• Publish simple security.txt file

• Publish vulnerability disclosure policy

• Host public bug bounty programs

Less Effort

More Effort

ANY QUESTIONS?

